Assignment 3 for MATH4220

February 25,2016

(No need to hand in.)

Exercise 3.1: 1, 2, 3, 4
Exercise 3.2: 1, 2, 3, 5, 6
Exercise 3.3: 1, 2, 3
Exercise 3.4: 1, 2, 3, 4, 5, 8, 9, 12, 13, 14
Exercise 3.5: 1, 2

Exercise 3.1

1. Solve $u_{t}=k u_{x x} ; u(x, 0)=e^{-x} ; u(0, t)=0$ on the half-line $0<x<\infty$.
2. Solve $u_{t}=k u_{x x} ; u(x, 0)=0 ; u(0, t)=1$ on the half-line $0<x<\infty$.
3. Derive the solution formula for the half-line Neumann problem $w_{t}-k w_{x x}=0$ for $0<x<\infty, 0<t<\infty$; $w_{x}(0, t)=0 ; w(x, 0)=\phi(x)$.
4. Consider the following problem with a Robin boundary condition:

$$
\begin{array}{rll}
\mathrm{DE}: & u_{t}=k u_{x x} & \text { on the half line } 0<x<\infty, 0<t<\infty \\
\mathrm{IC}: & u(x, 0)=x & \text { for } t=0 \text { and } 0<x<\infty \tag{*}\\
\mathrm{BC}: & u_{x}(0, t)-2 u(0, t)=0 & \text { for } x=0
\end{array}
$$

The purpose of this exercise is to verify the solution for $(*)$. Let $f(x)=x$ for $x>0$, let $f(x)=x+1-e^{2 x}$ for $x<0$, and let

$$
v(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 k t} f(y) d y
$$

(a) What PDE and initial condition does $v(x, t)$ satisfy for $-\infty<x<\infty$?
(b) Let $w=v_{x}-2 v$. What PDE and initial condition does $w(x, t)$ satisfy for $-\infty<x<\infty$?
(c) Show that $f^{\prime}(x)-2 f(x)$ is an odd function (for $x \neq 0$).
(d) Use Exercise 2.4.11 to show that w is an odd function of x.
(e) Deduce that $v(x, t)$ satisfies $(*)$ for $x>0$. Assuming uniqueness, deduce that the solution of $(*)$ is given by

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 k t} f(y) d y
$$

Exercise 3.2

1. Solve the Neumann problem for the wave equation on the half-line $0<x<\infty$.
2. The longitudinal vibrations of a semi-infinite flexible rod satisfy the wave equation $u_{t t}=c^{2} u_{x x}$ for $x>0$. Assume that the end $x=0$ is free $\left(u_{x}=0\right)$; it is initially at rest but has a constant initial velocity V for $a<x<2 a$ and has zero initial velocity elsewhere. Plot u versus x at the times $t=0, a / c, 3 a / 2 c, 2 a / c$, and $3 a / c$.
3. A wave $f(x+c t)$ travels along a semi-infinite string $(0<x<\infty)$ for $t<0$. Find the vibrations $u(x, t)$ of the string for $t>0$ if the end $x=0$ is fixed.
4. Solve $u_{t t}=4 u_{x x}$ for $0<x<\infty, u(0, t)=0, u(x, 0) \equiv 1, u_{t}(x, 0) \equiv 0$ using the reflection method. This solution has a singularity; find its location.
5. Solve $u_{t t}=c^{2} u_{x x}$ for $0<x<\infty, 0 \leq t<\infty, u(x, 0)=0, u_{t}(x, 0)=V$,

$$
u_{t}(0, t)+a u_{x}(0, t)=0,
$$

where V, a and c are positive constants and $a>c$.

Exercise 3.3

1. Solve the inhomogeneous diffusion equation on the half-line with Dirichlet boundary condition:

$$
\begin{array}{cl}
u_{t}-k u_{x x}=f(x, t) & (0<x<\infty, 0<t<\infty) \\
u(0, t)=0 & u(x, 0)=\phi(x)
\end{array}
$$

using the method of reflection.
2. Solve the completely inhomogeneous diffusion problem on the half-line

$$
\begin{aligned}
v_{t}-k v_{x x}=f(x, t) & (0<x<\infty, 0<t<\infty) \\
v(0, t)=h(t) & v(x, 0)=\phi(x),
\end{aligned}
$$

by carrying out the subtracction method begun in the text.
3. Solve the inhomogeneous Neumann diffusion problem on the half-line

$$
\begin{array}{ll}
w_{t}-k w_{x x}=0 & (0<x<\infty, 0<t<\infty) \\
w_{x}(0, t)=h(t) & w(x, 0)=\phi(x),
\end{array}
$$

by the subtraction method indicated in the text.

Exercise 3.4

1. Solve $u_{t t}=c^{2} u_{x x}+x t, u(x, 0)=0, u_{t}(x, 0)=0$.
2. Solve $u_{t t}=c^{2} u_{x x}+e^{\alpha x}, u(x, 0)=0, u_{t}(x, 0)=0$.
3. Solve $u_{t t}=c^{2} u_{x x}+\cos x, u(x, 0)=\sin x, u_{t}(x, 0)=1+x$.
4. Show that the solution of the inhomogeneous wave equation

$$
u_{t t}=c^{2} u_{x x}+f, \quad u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\psi(x),
$$

is the sum of three terms, one each for f, ϕ, ψ.
5. Let $f(x, t)$ be any function and let $u(x, t)=(1 / 2 c) \iint_{\Delta} f$, where Δ is the triangle of dependence. Verify directly by differentiation that

$$
u_{t t}=c^{2} u_{x x}+f \quad \text { and } \quad u(x, 0) \equiv u_{t}(x, 0) \equiv 0
$$

(Hint:Begin by writing the formula as the iterated integral

$$
u(x, t)=\frac{1}{2 c} \int_{0}^{t} \int_{x-c t+c s}^{x+c t-c s} f(y, s) d y d s
$$

and differentiate with care using the rule in the Appendix. This exercise is not easy.)
8. Show that the source operator for the wave equation solves the problem

$$
\mathscr{S}_{t t}-c^{2} \mathscr{S}_{x x}=0, \mathscr{S}(0)=0, \mathscr{S}_{t}(0)=I
$$

where I is the identity operator.
9. Let $u(t)=\int_{0}^{t} \mathscr{S}(t-s) f(s) d s$. Using only Exercise 8, show that u solves the inhomogeneous wave equation with zero initial data.
12. Derive the solution of the fully inhomogeneous wave equation on the half-line

$$
\begin{gathered}
v_{t t}-c^{2} v_{x x}=f(x, t) \quad \text { in } 0<x<\infty \\
v(x, 0)=\phi(x), \quad v_{t}(x, 0)=\psi(x) \\
v(0, t)=h(t),
\end{gathered}
$$

by means of the method using Green's theorem.(Hint: Integrate over the domain of dependence.)
13. Solve $u_{t t}=c^{2} u_{x x}$ for $0<x<\infty, u(0, t)=t^{2}, u(x, 0)=x, u_{t}(x, 0)=0$.
14. Solve the homogeneous wave equation on the half-line $(0, \infty)$ with zero initial data and with the Neumann boundary condition $u_{x}(0, t)=k(t)$. Use any method you wish.

Exercise 3.5

1. Prove that if ϕ is any piecewise continuous function, then

$$
\frac{1}{\sqrt{4 \pi}} \int_{0}^{ \pm \infty} e^{-p^{2} / 4} \phi(x+\sqrt{k t} p) d p \rightarrow \pm \frac{1}{2} \phi(x \pm) \quad \text { as } t \searrow 0 .
$$

2. Use Exercise 1 to prove Theorem 2.
